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Abstract

Objectives The aim of this study was to evaluate the reliability for dosage
individualization and Bayesian adaptive control of several literature-retrieved amikacin
population pharmacokinetic models in patients who were critically ill.
Methods Four population pharmacokinetic models, three of them customized for
critically-ill patients, were applied using pharmacokinetic software to fifty-one adult
patients on conventional amikacin therapy admitted to the intensive care unit. An
estimation of patient-specific pharmacokinetic parameters for each model was obtained by
retrospective analysis of the amikacin serum concentrations measured (n = 162) and
different clinical covariates. The model performance for a priori estimation of the area
under the serum concentration–time curve (AUC) and maximum serum drug concentration
(Cmax) targets was obtained.
Key findings Our results provided valuable confirmation of the clinical importance of the
choice of population pharmacokinetic models when selecting amikacin dosages for patients
who are critically ill. Significant differences in model performance were especially evident
when only information concerning clinical covariates was used for dosage individualiza-
tion and over the two most critical determinants of clinical efficacy of amikacin i.e. the
AUC and Cmax values.
Conclusions Only a single amikacin serum level seemed necessary to diminish the
influence of population model on dosage individualization.
Keywords amikacin; Bayes theorem; dosage individualization; population pharmaco-
kinetics

Introduction

Population pharmacokinetics provides a quantitative view of the effect of several
pathophysiological and/or clinical factors, on the pharmacokinetic profile of drugs. So,
population pharmacokinetic models allow patients to be treated as individuals by
expressing each model parameter based on individual covariates.[1,2] Accordingly,
customized models for well-defined patient categories (critically ill, oncologic, cystic
fibrosis) could lead to more precise dosage individualization. In antibiotherapy, such
models have increasingly used Monte Carlo simulation to evaluate the probability of
attaining targeted pharmacodynamic exposures against pathogens of interest. However, as
a tool to assist clinicians to design rational empirical dosages, such an approach must be
rigorously validated. In the clinical setting, model reliability may be impaired by several
issues: drug administration or blood sampling errors; insufficient or incorrect patient data;
failure to consider patient covariates, or intra-individual variability. External validation
(i.e. application of the model developed to a new data set from another study) addresses
the broader issue of the generalization of the model, although its applicability may be
unclear.[3] When pharmacokinetic models are developed for clinical predictive purposes,
determining whether model deficiencies have a noticeable effect on the substantive
inferences is the key question. It is also necessary to show whether other approaches yield
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similar or better estimates. Population model validation
studies are scarce in the literature, especially for old drugs
and they are sometimes selected on the basis of arbitrary and
subjective criteria. However, calculating a dosage regimen
without any patient data only relies on the model chosen and,
as a recent example illustrates, the choice of a particular
population pharmacokinetic model proved to be critical for
dose adjustment by therapeutic drug monitoring.[4]

For aminoglycoside therapy, Bayesian methods offer
rapid and accurate tools for dosage individualization in
patients with diverse pharmacokinetic behaviour.[5–8] The
population parameter estimates used range from the literature
values to classical population studies using NONMEM.[9–12]

When such models are obtained from specific cohorts (e.g.
oncology or intensive care unit (ICU)), a more precise
estimation of dosage requirements is achieved.[11–14] In fact,
one drawback of the Bayesian approach for dosage
individualization is its dependence on the quality of the
population pharmacokinetic information used.[15,16] How-
ever, it is not widely appreciated how well Bayesian methods
perform in the task of model comparison.[17–19] Bayesian
probability theory provides a unifying framework for data
modelling. The overall aims are to find models that are
matched to the data and to use these models to make optimal
predictions. To evaluate the plausibility of alternative models
in the light of the available data, Bayesian methodology
relates this plausibility to the predictions made by models
about the data and the prior plausibility of such models.[18]

Accordingly, this study was designed to evaluate the
reliability of four population pharmacokinetic models of
amikacin in critically ill patients, using both conventional
and Bayesian methodology. This evaluation, made using
alternative models, should indicate whether they were
reliable predictors of amikacin concentrations in such target
populations and hence their clinical suitability for dosage
individualization.

Materials and Methods

Patient characteristics

Fifty-one patients prescribed amikacin therapy admitted to
the medical ICU at the University Hospital in Salamanca
were included in the study. These patients were selected
retrospectively if at least three criteria were fulfilled. These
were: availability of n ≥ 1 amikacin post-infusion serum
concentrations, obtained from routine therapeutic drug
monitoring; age ≥ 16 years; and knowledge of the clinical
diagnosis and other patient data needed to implement
population pharmacokinetic models, as well as the times of
dosage administration and blood sampling.

Patients were not excluded on the basis of concurrent
disease states or drug therapy, except for solid or haemato-
logical malignancies or when extracorporeal removal tech-
niques were used.

The previous patient data as well as the data pertaining to
amikacin serum concentration monitoring were collected
from the records of the Clinical Pharmacokinetic Service in
conjunction with a review of the patient’s clinical history if
necessary. In accordance with ethical guidelines, the data

were presented anonymously. Since the study involved
retrospective collection of routine clinical data and required
no additional blood samples other than those ordinarily
requested by the Clinical Pharmacokinetic Service, informed
consent was not obtained. However, approval was obtained
from the Institutional Review Board of the University
Hospital. Therefore, no formal guidelines were required for
amikacin dosage regimens. The usual amikacin therapeutic
drug monitoring practice in the ICU involved collection of
predose and postdose serum samples at the start of therapy
(24–48 h). Additional serum levels were obtained depending
on the clinical evolution of the patient: trough or peak levels
to evaluate toxicity or efficacy, respectively.

Patient characteristics and amikacin-related data are
summarized in Table 1. The most prevalent clinical
diagnoses of the patients were sepsis (n = 25), pneumonia
(n = 14) and multiple trauma (n = 4).

Dosage administration and sampling times

All patients received initial amikacin dosage regimens
chosen by attending physicians and 40.3% of patients were
initially treated on conventional 500 mg two- or three-times
daily regimens. All doses were administered over 30–60 min
as intermittent intravenous infusions. Serum samples were
mainly obtained at the steady-state situation and only six
samples were obtained after the first and second doses. The
amikacin serum concentrations really obtained (n = 162)
were trough (n = 83), collected within 60 min before the
next infusion, peak (n = 67), collected within 30–180 min
post-infusion, and other sampling times (n = 12). Serum
amikacin concentrations were measured by a fluorescence
polarization immunoassay method (TDx analyzer, Abbott
Laboratories, Abbott Park, IL, USA). The intraday and
interday coefficients of variation for the assay were <5% and
9%, respectively.

Population pharmacokinetic models

The amikacin serum concentrations measured were compared
with those predicted by four population pharmacokinetic
models retrieved from the literature, shown in Table 2.[21–24]

All these models assumed as the structural model the one-
compartment kinetic model. The basic pharmacokinetic
parameters of this structural kinetic model were clearance
(CL) and volume of distribution (Vd) that allowed for the

Table 1 Patient characteristics

Number (male/female) 51 (36/15)

Age (years) 58.9 ± 15.4

Total body weight (kg) 70.7 ± 14.9

Height (cm) 166.1 ± 7.6

Serum creatinine (mg/dl) 1.20 ± 0.55

Initial amikacin dosage (mg/kg per day) 12.7 ± 5.5

Number of amikacin serum concentrations per patient 3.2 ± 1.4

Mean serum amikacin concentration (mg/l) 11.5 ± 9.7

Apache IIa score 18.3 ± 8.1

Positive end-expiratory pressure (cm H2O) 6.4 ± 3.5

Administration of catecholamines (yes/none) 10/41

aAcute physiology and chronic health evaluation.[20]
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prediction of the amikacin serum concentrations for different
dosing and sampling schedules.

The selection of population pharmacokinetic models was
based on the availability in our patients in the ICU of clinical
information about the covariates required for the different
models: age, height, gender, body weight, serum creatinine,
acute physiology and chronic health evaluation (Apache II)
score,[20] level of positive end-expiratory pressure (PEEP)
and catecholamine administration.

These models were applied to all patients to compare
predictive performance and the estimated values of the
pharmacokinetic parameters. For this purpose, all models
were incorporated in a computerized pharmacokinetic system
(Abbottbase Pharmacokinetic Systems, Abbott Park, IL,
USA), except model 1, which came provided with such
software.[22] This software allowed the choice of several
pharmacokinetic models and used different methods for
the estimation of individual pharmacokinetic parameters,
including Bayesian methodology. When residual error
models were not available, the default in Abbottbase software
was used.

Dosing weight defined as ((total body weight – ideal body
weight)0.4 + ideal body weight) was used for all the
calculations.[25] Creatinine clearance (CLCR) used for the
predictions was that corresponding to the last serum creatinine
concentration obtained. The estimation of CLCR was done
using the specific formulas used by the authors in the original
models.

We performed a priori (without serum concentration data)
and Bayesian (with only the first trough serum level measured)
forecasting of amikacin pharmacokinetic parameters and
serum concentrations by repeated analysis of each patient
data for the four population models considered. A priori
predictions involve only population information, whereas
Bayesian predictions are the predictions of that individual
patient’s subsequent serum concentrations after using the
population model and then fitting the patient’s own earlier
data. Equal weighting of the variances in the measured serum
concentrations to the variances in the population pharmaco-
kinetic model parameters were used.

To further assess the clinical utility of population models
for dose individualization based on area under serum

concentration–time curve (AUC) values, this parameter was
obtained retrospectively in each patient as daily dose divided
by clearance (CL). The amikacin dosage was fixed at a
hypothetical 1000 mg/day as standard daily dose and individual
clearance was estimated with a maximum a posteriori (MAP)
Bayesian approach, using all the serum data available per
patient as individual information. Since another usual pharma-
codynamic index for aminoglycoside therapy is the maximum
serum concentration (Cmax) vs minimum inhibitory concentra-
tion (MIC) ratio, (Cmax/MIC), the corresponding a priori Cmax

value for the same dose and using all of the individual
information was also estimated to compare the population
models evaluated. Peaks predicted at 0.5 h post-infusion were
used as an approach of Cmax value, considering that in
aminoglycoside therapeutic drug monitoring 0.5–1 h is the
usual sampling time.

To extend the clinical utility of our study, estimation of
the mean daily dose for the extended dosage interval regimen
approach, aiming to achieve a target Cmax � 45 mg/ml and
Cmin < 1 mg/ml, was done using the best predictive popula-
tion pharmacokinetic model.[26]

Predictive performance of models

The predictive performance of population models for a priori
and Bayesian amikacin serum concentration predictions
was assessed using the following criteria. Firstly, linear
regression analysis of the correlation between measured and
predicted amikacin serum concentrations. Secondly, propor-
tion of measured serum concentrations predicted accurately,
defined as being centred on the predicted concentration
±20%; and prediction error analysis as proposed by Sheiner
and Beal.[27] Bias was estimated from the mean prediction
error (MPE), which was calculated as the sum of the
predicted minus the observed values, divided by the number
of pairs of data points. Precision was estimated from
the mean absolute prediction error (MAE) calculated as
S[MPE]/n. Finally, statistical comparison of standardized
prediction errors, where standard deviation in the predicted
values was a normalization factor. The standard deviation
was obtained from the residual error variances used by the
Abbottbase software.

Table 2 Summary of population pharmacokinetic models

Model Equations Variability (CV%)

Between patients Assay

1[22] Vd = 0.25 l/kg 0.3 0.15

CL (ml/min per kg) = 0.0417 + 0.815 CLCR
b 0.25, 0.4a

2[13] Vd (l) = 0.39 W ¥ (1 + 0.24 Sepsis) 0.23 NA

CL (ml/min) = 0.93 CLCR
b ¥ (1 + 0.22 Trauma) 0.28

3[10] Vd (l) = 1.5 ¥ Apache II score 0.29 NA

CL (ml/min) = 44.5 + 0.67 CLCR
b – 1.29 PEEP – 8.34 Cat 0.41

4[21] Vd = 0.35 l/kg 0.32 0.15

CL (ml/min per kg) = 0.0417 + 0.815 CLCR
b 0.25, 0.4a

Cat, use of catecholamines; CL, clearance; CLCR, creatinine clearance; CV, coefficient of variation; NA, not applicable; PEEP, positive

end-expiratory pressure; Vd, volume of distribution; W, total body weight. aFor intercept and slope, respectively. bMethod of estimation of CLCR:

Cockroft-Gault[23] for models 1 and 4, Jeliffe[24] for models 2 and 3.
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Bayesian inference

To make a comparison of the four models via Bayesian
inference, the following development was considered:

Let §(j) be the prior probability of model j, i = 1, 2, 3, 4, and
e(i) the error with that model defined by: e(j) = observed –
estimated.

This error has two components: one for Vd and the other
for CL. If the correct model is j, then the errors have a two-
dimensional normal distribution with a mean of zero:

e(j) ... N2 (0, S(j)) such that the likelihood is:

LðjÞ ¼ exp f�n=2 Tr ½∑ðjÞ�1 MðjÞ�g=ð2πÞ2n det ð∑ðjÞÞn=2

where M(j) is the matrix of second-order sample moments of
the errors, which is an estimator of S(j), and hence the
likelihood can be estimated by:

L̂ ðjÞ ¼ exp f�n=2 Tr ½MðjÞ�1 MðjÞ�g=ð2πÞ2n det ðMðjÞÞn=2

¼ expð�n=2:2Þ=ð2πÞ2n det ðMðjÞÞn=2

¼ e�n=ð2πÞ2n det ðMðjÞÞn=2:
In these equations Tr is the transpose matrix, n is the number

of cases and det the determinant.
The a posteriori possibilities (§^) are proportional to the

initial ones multiplied by the likelihoods. Thus:

ðx̂ ) / xðj ) Lj� xðj ) L̂( jÞ / xðjÞ=det ðMðjÞÞn=2:
Since §(j) = 1/4 we finally have:

ðx̂ ) / 1=det ðMðjÞÞn=2

and the model achieving the highest value would be the most
suitable.

To compare the four models we considered that the a
posteriori probabilities of models were proportional to the
initial ones multiplied by the likelihoods. The model that
achieved the highest value would be the most suitable.[19]

Statistical analysis

Statistical analyses were performed using the 11.0 version of
the SPSS software (SPSS Inc Headquarters, Chicago, IL,
USA). Statistical significance was defined a priori as a
P value of less than or equal to 0.05. For multiple
comparisons, the Kruskal–Wallis and the Bonferroni tests
were selected owing to the homoscedasticity of the data.

Results

Amikacin pharmacokinetic parameters and serum concentra-
tions were predicted from the four population pharmacokinetic

models evaluated in our cohort of 51 patients in the intensive
care unit. All patients had at least one amikacin serum
concentration measured but additional concentrations avail-
able per patient were one, two, three or more for nineteen,
eight, thirteen and eight patients, respectively. Thus, 162
amikacin serum concentrations were predicted a priori,
whereas for Bayesian prediction this figure was 111.

The regression analyses between predicted and measured
amikacin concentrations for all models are shown graphically
in Figure 1 whilst the correlation analyses are shown in
Table 3. The proportion of measured concentrations
predicted accurately, defined as being centred on the
predicted concentration ±20%, was 15.4, 27.7, 19.7 and
22.8% respectively for models 1–4 considered with respect to
a priori prediction. The values, in similar ranking, were 14.4,
46.8, 34.2 and 36.9% for Bayesian prediction.

The conventional metrics for the evaluation of the
predictive performance of population pharmacokinetic mod-
els were prediction errors, both normal and standardized. The
former were globally depicted by box plotting (Figure 2),
whereas the latter have been summarized in Table 4. From
visual inspection of the MPE, variations in the predictive
performance of the population models were evident, model 2
appearing as the one best centred around the desired zero
value. Analysis of the standardized prediction errors revealed
that all pharmacokinetic population models performed best in
the a priori prediction of peak amikacin concentrations,
whereas trough concentrations were more biased and
imprecisely predicted. Also, the statistical differences
among the models evaluated were very apparent for peak
concentrations.
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Figure 1 Linear regression analysis between measured and predicted

amikacin serum concentrations for four population models. Cobs,

measured serum concentrations; Cpred, predicted serum concentrations.

See Table 3 for correlation analysis.

Table 3 Correlation analysis for the four population models

Correlation analysis Model 1 Model 2 Model 3 Model 4

r 0.87 0.86 0.82 0.86

Intercept (confidence interval) -2.45 (-4.28, -0.61) 0.52 (-0.75, 1.80) -1.03 (-2.38, 0.31) -0.24 (-1.78, 1.30)
Slope (confidence interval) 1.39 (1.27, 1.51) 0.91 (0.83, 1.00) 0.83 (0.74, 0.92) 1.15 (1.04, 1.25)

See Figure 1.
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The a priori vs Bayesian prediction for trough concentra-
tions was: -2.79 ± 3.9 vs -0.62 ± 3.8, -1.16 ± 4.0 vs -0.93 ±
2.3, -3.73 ± 4.0 vs -1.23 ± 2.4 and -1.31 ± 4.1 vs -0.97 ±
2.6 mg/ml for the MPE of models 1–4, respectively. Also, the
mean values of MAE were reduced from 3.6 ± 3.0 for the a
priori to 1.9 ± 2.0 for Bayesian prediction.

The possible influence of a diagnosis of sepsis in predictive
performance was examined. Nearly 50% of our patients had
this diagnosis and one of the population pharmacokinetic
models evaluated was specifically designed in that subpopula-
tion. Table 5 summarizes the performance of the models in
septic patients, similar findings to those obtained for the
analysis of the global population being observed. Model
comparison by Bayesian inference reaffirmed model 2 as more
suitable owing to the higher value obtained for posteriori
possibility: 0.99 vs 1.3 exp -25, 3.9 exp -9 and 2.2 exp -12
for the other models.

The comparison of the models in terms of AUC showed the
following mean ± SD AUC values for a priori vs Bayesian
estimation: 319.8 ± 142.8 vs 322.5 ± 181.3, 339.6 ± 148.0 vs
316.4 ± 141.6, 212.5 ± 56.4 vs 244.6 ± 118.2 and 319.8 ± 142.8

vs 304.6 ± 167.3 mg h/l for models 1, 2, 3 and 4, respectively.
The estimated a priori Cmax, expressed as mean ± SD values,
were 58.2 ± 12.9, 36.4 ± 8.2, 41.2 ± 13.7 and 43.8 ± 9.8 mg/l
for models 1–4, respectively. These AUC and Cmax values
could be interpreted further by taking into account some
publishedMIC data concerning important pathogens in the ICU
environment, thus allowing their use as surrogates to predict
clinical success.

For an extended dosage interval regimen of amikacin,
and according to the best predictive population model, the
mean ± SD (range) dose obtained was 1453 ± 370 (750–
2750) mg, whichmust be administered each 24, 48 and 72 h for
the 62, 28 and 8% of patients, respectively.

Discussion

Despite continued progress toward anti-infective dosage
selection based on pharmacodynamic characteristics, anti-
biotic dosage regimens should be further individualized
by linking pharmacodynamic criteria with patient- and/or
institution-specific MIC values and pharmacokinetic
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Figure 2 Mean prediction errors obtained from population pharmacokinetic models of amikacin serum concentrations in the whole population.

The two models used were (a) a priori prediction and (b) Bayesian prediction. The box–whisker plot represents the median, 25th and 75th percentiles,

respectively. The circles represent outliers.

Table 4 Predictive performance in the whole population

Model used Standardized mean prediction error ± SD

A priori prediction Bayesian prediction*

Cpeak (n = 67)a Ctrough (n = 83)b Cpeak (n = 66)c Ctrough (n = 34)d

Model 1 0.93 ± 1.0 -4.20 ± 8.3 2.18 ± 1.0 -1.76 ± 3.1

Model 2 -0.08 ± 1.7e -1.46 ± 2.8 0.66 ± 1.9 -1.58 ± 2.7

Model 3 -1.06 ± 3.0 -10.6 ± 15.7 -1.04 ± 3.4 -1.79 ± 2.4

Model 4 0.66 ± 1.0 -1.18 ± 2.2 1.32 ± 1.1 -1.36 ± 2.3

*Using one measured concentration as feedback. aSignificant differences (P < 0.05) among models except 1 vs 4 and 2 vs 3. bSignificant differences

(P < 0.05) among models except 2 vs 4. cSignificant differences (P < 0.05) among models except 2 vs 4. dNo significant differences among models.
eConfidence interval 95% comprised zero value.
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parameters.[28,29] The rate of optimal serum aminoglycoside
profiles obtained after dosage adjustment by Bayesian
feedback techniques is remarkable, but the large proportion
of patients seen to have sub-therapeutic peak concentrations
before dosage individualization emphasizes the need for
therapeutic drug monitoring and better initial dosing strate-
gies.[30–32] Good population pharmacokinetic models would
help to optimize the appropriate dose since the initiation of
aminoglycoside therapy, irrespective of the multidose or once-
daily dosage schedules used.

Although the first intended application of the pharmaco-
kinetic models we evaluated here was initial selection of the
amikacin dosage in ICU patients, the predictive performance
of the corresponding serum concentrations was the usual
surrogate.[5] The performance of the models was first
evaluated when they were used as a nomogram before the
availability of any amikacin concentrations (a priori predic-
tion) and then using the minimum collected data as
individual or feedback information (Bayesian prediction).
Since the prior data e.g. the expected values of the
pharmacokinetic parameters for any given patient, were
adjusted differently for each model, the predicted concentra-
tions must differ among models. However, in this study it
was apparent that for both a priori and Bayesian prediction
statistically significant differences (P < 0.05) in prediction
errors were only seen for the peak amikacin concentrations.
The most important determinant of peak concentrations was
the volume of distribution (Vd), and hence it was pertinent to
conclude that discrepancies in this parameter for population
models may have been be more critical. However, another
additional factor could be the error in the measurement of
peak concentrations. A study of 36 patients in the ICU
reported that interpatient variability in amikacin pharmaco-
kinetics may have been more than moderate for Vd.[33] The
models assuming Vd as only a function of body weight
yielded a significant bias in predicting a priori and Bayesian
peak amikacin concentrations (8.9 ± 8.3 and 11.1 ± 7.7 mg/
ml, respectively, for model 1; 5.5 ± 7.0 and 5.7 ± 5.5 mg/ml,
respectively, for model 4). In contrast, models 2 and 3, which
took into account relevant descriptors of critically ill patients
for the estimation of Vd as sepsis diagnosis or Apache II
score, allowed a more accurate prediction of peak amikacin
concentrations, even if the model did not include feedback.
In fact, the means ± SD of MPE for a priori peak amikacin

prediction of such models were not significantly different
from zero. These results may have implications for clinical
efficacy because the Cmax/MIC ratio could be used as a
pharmacodynamic target for dosage adjustment.[34–36] Baco-
polou et al.[33] have suggested that individualized once-daily
amikacin dosing to target peaks of 45 mg/ml may be a safe
and effective strategy for patients in the ICU.

Predictive performance is the most indicative test of a
predictor because it considers bias as well as systematic error
with repeated use. However, under the assumption of
unbiased population parameter estimates a more appropriate
test is that the mean value of the standardized prediction
errors should not be significantly different from zero.[2,3] In
this respect, model 2 performed the best in a priori and
Bayesian predictions of peak values for the whole population
and also in patients with sepsis. Moreover, the therapeutic
precision seemed to be increased for this model owing to the
greater ability to reach a clinically acceptable range (±20%)
of target serum concentrations and a better degree of
association between the observed and predicted amikacin
concentrations. The final pharmacokinetic values from model
2 were in very good agreement with the a priori distribution
of model parameter estimates, also confirming it, via
Bayesian inference, as the best overall population model.

Despite the evident reliability of model 2 in critically ill
patients, it is worth noticing that Bayesian prediction
improved predictive performance irrespective of the popula-
tion model used. Therefore only a single amikacin serum
sample was needed for an acceptable Bayesian prediction of
the individual pharmacokinetic profile, regardless of the
population information used. However, a more precise and
optimal prediction could be made if a higher number of
samples could be obtained.

While all the models were negatively biased for trough
amikacin concentrations, the relationship between amikacin
clearance (CL) and patient covariates could be more complex
or variable than those defined in the population models
considered here. Moreover, in this study the patients had a
moderate renal insufficiency. This fact eventually could
influence the predictive performance of the models if patients
with severe renal impairment, where amikacin pharmaco-
kinetics may be significantly modified, were considered.
Intra-individual variations related to the pathological char-
acteristics of critically ill patients could lead to outliers in

Table 5 Predictive performance in patients with sepsis

Model used Standardized mean prediction error ± SD

A priori prediction Bayesian prediction*

Cpeak (n = 33)a Ctrough (n = 40)b Cpeak (n = 33)c Ctrough (n = 16)d

Model 1 0.88 ± 0.8 -5.36 ± 10.1 2.08 ± 0.9 -1.99 ± 3.0

Model 2 -0.46 ± 1.6e -1.54 ± 2.6 0.01 ± 0.7 -1.87 ± 3.3

Model 3 -1.28 ± 2.3 -14.7 ± 22.6 -1.53 ± 3.5 -2.48 ± 2.4

Model 4 0.50 ± 0.9 -1.74 ± 2.7 1.18 ± 1.0 -1.61 ± 2.7

*Using one measured concentration as feedback. aSignificant differences (P < 0.05) among models except 1 vs 4 and 2 vs 3. bNo significant differences

(P < 0.05) among models except 2 vs 3 and 3 vs 4. cSignificant differences (P < 0.05) among models except 2 vs 3. dNo significant differences among

models. eConfidence interval 95% comprised zero value.
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amikacin concentrations, which could feasibly explain the
observed precision and bias. However, when the same
approach was used for the adaptive control of aminoglyco-
side therapy in other patient populations, predictive perfor-
mance was similar.[7–10,15,21,31,32,37,38]

Methods that rely on the estimation of Vd and CL would
appear preferable in patients with variable pharmacokinetics,
such as critically ill patients. However, methods based on the
use of target AUC have been advocated since the increasing
prevalence of once-daily aminoglycoside dosing.[35–38] This
clinical scenario and the unavailability of amikacin nomo-
grams specifically based on ICU patients prompted us to
assess the a priori predictability of the AUC in this specific
patient population. The influence of the population model in
this estimation was clear from the statistically significant
differences (P < 0.05) observed among the models. The
ranges (50–920) and variation coefficients (45.2–55.5%) of
the AUC values obtained underscored the idea that
pharmacokinetic behaviour in critically ill patients was too
variable and that individual pharmacokinetic monitoring was
warranted to attain a narrower range for such targets.

Population model-based Bayesian approaches with
extended-interval dosing have not been formally studied for
amikacin in patients who are critically ill. According to the
best predictive population model an initial amikacin dosage
of 1500 mg or equivalent 20 mg/kg/day is likely used for this
selected population. Figure 3 depicts model influence on
serum profiles for such an initial dosage. However, other
considerations should be taken into account for decision
making in patients in intensive care, such as wide intra- and
interpatient variability and the need of further dosage interval
adaptation. These uncertainties as well as model-dependence
could be minimized from only one concentration measure-
ment as a part of the routine clinical care of the patient. This
approach would have definitive advantages over nomogram
or population pharmacokinetic models for amikacin dosing
in the environment of the ICU, although other appropriate
methods of dosage design may be used in this setting.[39]

We believe that clinicians should be aware of the
differences among published population models when
selecting dosages, especially for patients who are critically
ill and who seldom tolerate sub-optimal therapy. Although
our results consistently pointed to the potential importance of
this fact, the retrospective design of our study and the fact
that the clinical outcomes were not evaluated support the

need for supplementary prospective and comparative clinical
trials to confirm what the optimum amikacin model is for this
heterogeneous population.

Conclusions

For patients in the ICU the use of specific covariates such as
sepsis diagnosis or Apache II score in population pharma-
cokinetic models was shown to be decisive in the a priori
optimum choice of amikacin dosage based on the Cmax/MIC
ratio. These specific models might be used as a starting
dosing nomogram for this patient population and only one
serum measurement individually obtained seems to neglect
the model influence on dosage individualization. However,
given the interpatient pharmacokinetic variability associated
with critical illness it is unlikely that even highly predictive
models would provide the level of clinical confidence
necessary to replace this minimum individual information.
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